
A Technique for Identifying and Testing Structural
Clones in Large Scale Systems

Anil Patro,Raj Sekhar,C.P.V.N.J.Mohan Rao
Department of CSE, Avanthi Institute of Engineering & Technology, Narsipatnam, Visakhapatnam district,

Affiliated to J.N.T.U Kakinada, A.P, India.

Abstract-Clones have played an important role in increasing
the software’s maintenance and decreasing the quality.
Hence detecting the clones and removing them has been an
interesting scenario. Detecting clones not only improves the
productivity of software but also enhances re-usability. A
number of techniques were presented in the past but they
have had there own drawbacks. Efficient algorithms are
crucial for identifying structural clones. In this paper we
present a tool that uses efficient data mining techniques like
clustering and association rule mining. As a result we present
some methods for detecting exact and near miss clones in
program source code. We also present how to test the code
using model-based testing techniques in order to test for the
bugs at the time of running the tool. Our technique works
very well for sparse datasets. Our technique is proposed to
improve the speed of the clone detection. In order to reduce
the number of comparisons required for clone detection, we
select representative clones from the existing clone list by
using manual techniques like tokenization.

Keywords-Clones, Re-use, Clone-Detection, Maintenance,
Structural Clones.

I. INTRODUCTION

 In large scale systems many projects are
developed in parallel. The code of all the software projects
is centrally stored in a system. Hence duplicated code is
common in all kind of software systems. And also the data
obtained from the previous work shows that a considerable
amount of the source of large computer programs is
duplicated code i.e., (10-20%) [2][3][4]. Clones are
usually created by using adhoc copy-paste techniques and
as a result extending the existing code. But due to this
code duplication software maintenance has become more
complicated. Detecting the lower level clones called
simple clones has been easy but identifying the higher
level clones i.e., clones at file and directory level has been
an uphill task. It has been like discovering the trees
through the forest.
 Another important point ignored by many
programmers is that the number of errors also will be
duplicated together with the duplicated code. And as a
result modifications made to the original version should
also be applied to the duplicated code. If at all a new
module is to be added to a system all the places related to
it will require modifications. Hence it is difficult to assure
the quality of the system. Whenever bugs are identified
they should be fixed in all of the duplicated code. Failing
to identify the duplicated code will increase the difficulty
to fix the bugs. Hence it is important to locate clone data
in large software and remove them as early as possible.

Previous clone detection [1] work was only
limited to textual matches or near misses only on complete
function bodies. Whereas this paper presents some
practical methods for detecting exact and near miss clones

for arbitrary fragments of program source code. And also the
current clone detection approaches are not scalable to very
large codes. Hence they cannot be used for real-time detection
in large systems, thereby reducing their usefulness for clone
management.
 Hence in this paper we will be using the extensive use
of data mining techniques. As per the statistics seven different
levels of clones has been detected. Out of which some levels of
detection are done manually thereby are known as simple
clones [5] [6]. Other level needs some automation tools for
detecting the clones. The levels that need concentration are as
follows:
Level-1: Repeating groups of methods clones across different
files.
Level-2: Repeating groups of file clones across different
directories.
Level-3: Repeating groups of simple clones across different
methods and files.
Level-4: Method clone sets and file clone sets.
 This can be done by using Clustering and frequent
item set mining without candidate generation with the help of
FP-Growth algorithm [8]. The proposed algorithms and their
performance results are given in the coming sections. And at
last we just try to test the interface between the codes across
different files and directories in order to identify the bugs and
fix them by using model-based testing techniques.
 The remaining section is organized as follows. In
section 2, we give a procedure to identify the simple clones. In
section 3, we briefly review about the FP-growth method and
discuss about the algorithm and its usefulness in clone
detection. In section 4, we introduce effective partition based
clustering technique and its algorithm to search for clones at the
directory level. Section 5, is dedicated to the results obtained by
applying our technique to a particular project. And at last
reference papers that have helped in guiding this paper are
listed.

II. DETECTING SIMPLE CLONES

 Grouping similar code fragments has been an easy
task. These are done by pairing up the simple clone sets. As our
methodology is based on the lexical analysis we use a tool
called Repeated Tokens identifier to tokenize the given code
into a string, from which a string based matching algorithm
computes the simple clone sets. Our tool supports some
languages like Java, PHP etc…

III. ORGANIZING THE CLONE DATA THROUGH FP-GROWTH

ALGORITHM

 Once the lower level clones are identified they need to
be organized to make it compatible with the input format for
the data mining technique that is applied on this data. We apply
frequent item-set mining based on the market basket analysis

Anil Patro,Raj Sekhar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1403-1406

1403

[10]. In this the input database consists of a list of
transactions each one containing items bought together.
Hence in our case a transaction corresponds to the simple
clone sets that may be a file or a method. Although the
previous work has been applied with the frequent item-set
mining using the Apriori algorithm [7] it suffers from the
following two drawbacks.

1. The methodology needs to generate huge number
of candidate sets.

2. We need to repeatedly scan the database and
check for a large set of candidates by pattern
matching.
Hence in this scenario an interesting technique

called frequent pattern growth (FP-Growth), which adopts
a divide and conquer strategy is used. Level-3 and Level-4
clones can be detected using this technique. This method
works as follows: First, it compresses the database
representing frequent items into a frequent-pattern tree, or
FP-tree, which retains the itemset association information.
It then divides the compressed database into a set of
conditional databases; each associated with one frequent
item or “pattern fragment,” and mines each such database
separately.
 For example let us consider a transactional
database as shown in the figure-1,

Fig 1. Transaction Database

 In the first scan of the database we find out the 1-
frequent itemset and their support count. Then the itemsets
are listed in descending order of support count. Then we
construct an FP-tree as follows. Initially create the root of
the tree and label it with null. Then scan the database for
the second time by creating the branches for each
transaction. An item header for each node so that each
item points to its occurrences in the tree through a chain of
links.

Fig 2. FP Tree

The mining procedure that is performed on the tree
obtained above using the data can be explained with the help of
the following algorithm.

Procedure FP_growth (Tree,α)

1) if Tree contains a single path P then
2) for each combination (denoted as β) of the nodes in

path P
3) generate pattern βUα with support_count =

minimum support count of nodes in β;
4) else for each ai in the header of Tree {
5) generate pattern β= ai Uα with support_count =
ai.support_count;
6) construct β’s conditional pattern base and then β’s
conditional FP_tree Treeβ;
7) if Treeβ≠0 then
8) call FP_growth (Treeβ ,β); }

But as the database grows in size it is sometimes better
to first partition the database into a number of projected
databases and then construct an FP-tree and mine it in each
projected database.

IV. DETECTING FILE AND METHOD CLONES

 Higher level clones i.e., clones existing at file and
method level cannot be identified by FP-growth procedure
because they are quite complicated. Hence Level-1 and Level-2
clones can be identified by using the clustering techniques.
Clustering is a process of grouping the data objects into classes
so that data objects within a class are highly similar to one
another but dissimilar to data objects in other class based on
attribute values describing these data objects. Although a
number of techniques exist one of the best among them has
been the Partitioning methodology. We have used the
partitioning method by using K-means in this paper. In this
procedure for a given database on ‘n’ objects and ‘k’ the
number of clusters that are to be formed partitioning is done to
organize the objects into ‘k’ partitions representing a cluster.
 The following algorithm is applied to form clusters of
data objects.

The k-means algorithm

(1) Arbitrarily choose ‘k’ objects from D as the initial
cluster centers

(2) Repeat
(3) (Re)assign each object to the cluster to which the

object is the most similar,
Based on the mean value of the objects in the
cluster;

(4) Update the cluster means, i.e., calculate the mean of
the objects for each cluster;

(5) Until no change;
 This algorithm takes as input ‘k’ and partitions the
data objects into ‘k’ classes. Most similar objects are grouped
as a cluster and this process is repeated iteratively until it
satisfies criteria given below.

Where, E is the sum of square-error for all objects in the
database, ‘p’ is the point in space representing a given object,
and ‘mi’ is the mean cluster of ‘Ci’.

Anil Patro,Raj Sekhar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1403-1406

1404

V. APPLICATION OF THE MODEL-BASED TESTING

 In general many bugs may crop up during the
application of these data mining techniques to the cloned
data. And as a result the tool may not work in a correct
manner. Hence to reduce the burden on the user we may
like to apply a model-based test to the code. In this case a
program model is used in some way to help with testing.
Starting with the informal requirements specification,
models with increasing levels of details are constructed.

Fig 3. Model based Testing

As shown above application-specific code must

be integrated into the framework [9] for which specialised
framework classes are written and are executed for getting
the clones information without any sort of bugs and errors.
This part of the paper is still in progress so more details
are not mentioned.

VI. IMPLEMENTATION

 The architecture to implement the above
mentioned techniques would appear as shown below in the
fig.4.

Fig 4. Clone Detection Architecture

In this architecture we would select a language of our
interest and then enter the route directory of our choice of a
particular project. A proper scanning of the sub-directories are
performed using the above mentioned data mining techniques
and apply proper encoding techniques and finally the updated
information is reported to the user.
 We have applied this process to a project named Tele-
Medicine and we got the following result set. A sample file has
been taken as showing the common lines of code.

public static void main(String a[]) {
 try{
 String add=reqCore();
System.out.println("aaaaaaaaaaaaaaaaaaaaaaaa"+add);
 } catch(Exception e) { System.out.println(e); }
 }
public static String reqCore() throws Exception {
add=(String)obip.readObject();
 b=false;
 System.out.println("The Next Core Address
:"+add);
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 When the entire directory containing the project was
taken and then scanned for detecting the clones the following
data was obtained.

REPEATING GROUP OF METHOD CLONES ACROSS FILES

Minimum Cover 50% 90%
No. of groups 183 126
No. of file sets covered by groups 95 70
% of file sets covered 60% 40%
Files covered by groups 545 275
Min no of files in a group 1 1
Max no of files in a group 92 73
Avg. no of files in a group 25 30

VII. CONCLUSION

 In this paper we emphasized on higher level cloning.
The process is started by finding simple clones (that is, similar
code fragments). Increasingly higher-level similarities are then
found incrementally using data mining techniques of finding
frequent closed itemsets, and clustering. We believe our
technique is both scalable and useful. In this paper, we intend to
extend our technique for testing the bugs at the interfaces of the
clones. Implementing good visualizations for higher-level
similarities is also an important part of our work. Currently, our
detection and analysis of similarity patterns is based only on the
physical location of clones. With more knowledge of the
semantic associations between clones, we can better perform
the system design recovery.

ACKNOWLEDGEMENTS

 We would wish to thank our Head of the Department
and the other faculty members who have helped us for this
paper. I would also like to thank the selection committee who
has reviewed this paper.

Anil Patro,Raj Sekhar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1403-1406

1405

REFERENCES
[1] Kozaczynski, W., Ning, J. and Engberts, A. Program concept

recognition and transformation. IEEE Transactions on Software
Engineering, 18(12):1,065-1,075, December 1992.

[2] Baker, B. S. On finding duplication and near-duplication in large
software systems. In Proceedings of the 2nd Working Conference
on Reverse Engineering (WCRE), pages 86-95, 1995.

[3] Ducasse, S, Rieger, M., and Demeyer, S. A language independent
approach for detecting duplicated code. In Proceedings of the
International Conference on Software Maintenance (ICSM), pages
109-118, 1999.

[4] Mayrand J., Leblanc C., Merlo E. Experiment on the automatic
detection of function clones in a software system using metrics. In
Proceedings of the International Conference on Software
Maintenance (ICSM), pages 244-254, 1996.

[5] Krine, J. Identifying similar code with program dependence graphs.
In Proceedings of the Eight Working Conference on Reverse
Engineering (WCRE), pages 301-309. Stuttgart, Germany, October
2001.

[6] Koschke, R., Falke, R., and Frenzel, P. Clone Detection Using
Abstract Syntax Suffix Trees. In Proceedings of the 13th Working
Conference on Reverse Engineering (WCRE), pages 253-262,
2006.

[7] Kamiya, T., Kusumoto, S, and Inoue, K. CCFinder: A multi-
linguistic token-based code clone detection system for large scale
source code. IEEE Transactions on Software Engineering,
28(7):654 – 670, July 2002.

[8] Rieger, M. Effective Clone Detection without Language Barriers.
Ph.D. Thesis, University of Bern, 2005.

[9] Basit, H. A., Puglisi, S., Smyth, W., Turpin, A., and Jarzabek, S.
Efficient token based clone detection with flexible tokenization. In
Proceedings of the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC-FSE), pages 513-516, September 2007.

[10] Han, J., and Kamber, M., Data Mining: Concepts and Techniques,
Morgan Kaufman Publishers, 2001.

Anil Patro,Raj Sekhar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1403-1406

1406

